Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Work function engineering of ZnO electrodes by using p-type and n-type doped carbon nanotubes.

Identifieur interne : 000276 ( Main/Exploration ); précédent : 000275; suivant : 000277

Work function engineering of ZnO electrodes by using p-type and n-type doped carbon nanotubes.

Auteurs : RBID : pubmed:24196784

Abstract

Transparent electrodes in organic electronic devices are strongly needed in order to replace indium tin oxide (ITO). Some of the best candidates are ZnO films, which have shown both good electronic properties and solution processability compatible with roll-to-roll production of the devices. We present the possibility to engineer the work function of ZnO by blending it with carbon nanotubes (CNTs). B-doped (p-type), N-doped (n-type) and undoped CNTs as well as their blends with ZnO have been characterized by atomic force microscopy (AFM), scanning Kelvin probe microscopy (SKPM) and Raman spectroscopy. The results of Raman spectroscopy demonstrate the substitutional doping of carbon nanotubes, which preserves their covalent structure although increasing the disorder within the nanotubes. The roughness and average shape of grains of ZnO when blended with the doped nanotubes have been measured by AFM. Finally, SKPM shows that the work function of the blends can be engineered from 4.4 ± 0.1 to 4.9 ± 0.1 eV according to the kind of nanotube that is blended even if only a small amount of nanotubes is added to the blend (0.08 wt%).

DOI: 10.1088/0957-4484/24/48/484013
PubMed: 24196784

Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Work function engineering of ZnO electrodes by using p-type and n-type doped carbon nanotubes.</title>
<author>
<name sortKey="Urbina, Antonio" uniqKey="Urbina A">Antonio Urbina</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physics and Centre for Plastic Electronics, Imperial College London, Prince Consort Road, London SW7 2AZ, UK. Department of Electronics, Technical University of Cartagena, Plaza Hospital 1, 30202 Cartagena, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Department of Physics and Centre for Plastic Electronics, Imperial College London, Prince Consort Road, London SW7 2AZ, UK. Department of Electronics, Technical University of Cartagena, Plaza Hospital 1, 30202 Cartagena</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Park, Ji Sun" uniqKey="Park J">Ji Sun Park</name>
</author>
<author>
<name sortKey="Lee, Ju Min" uniqKey="Lee J">Ju Min Lee</name>
</author>
<author>
<name sortKey="Kim, Sang Ouk" uniqKey="Kim S">Sang Ouk Kim</name>
</author>
<author>
<name sortKey="Kim, Ji Seon" uniqKey="Kim J">Ji-Seon Kim</name>
</author>
</titleStmt>
<publicationStmt>
<date when="2013">2013</date>
<idno type="doi">10.1088/0957-4484/24/48/484013</idno>
<idno type="RBID">pubmed:24196784</idno>
<idno type="pmid">24196784</idno>
<idno type="wicri:Area/Main/Corpus">000326</idno>
<idno type="wicri:Area/Main/Curation">000326</idno>
<idno type="wicri:Area/Main/Exploration">000276</idno>
</publicationStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Transparent electrodes in organic electronic devices are strongly needed in order to replace indium tin oxide (ITO). Some of the best candidates are ZnO films, which have shown both good electronic properties and solution processability compatible with roll-to-roll production of the devices. We present the possibility to engineer the work function of ZnO by blending it with carbon nanotubes (CNTs). B-doped (p-type), N-doped (n-type) and undoped CNTs as well as their blends with ZnO have been characterized by atomic force microscopy (AFM), scanning Kelvin probe microscopy (SKPM) and Raman spectroscopy. The results of Raman spectroscopy demonstrate the substitutional doping of carbon nanotubes, which preserves their covalent structure although increasing the disorder within the nanotubes. The roughness and average shape of grains of ZnO when blended with the doped nanotubes have been measured by AFM. Finally, SKPM shows that the work function of the blends can be engineered from 4.4 ± 0.1 to 4.9 ± 0.1 eV according to the kind of nanotube that is blended even if only a small amount of nanotubes is added to the blend (0.08 wt%).</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="In-Process">
<PMID Version="1">24196784</PMID>
<DateCreated>
<Year>2014</Year>
<Month>01</Month>
<Day>09</Day>
</DateCreated>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1361-6528</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>24</Volume>
<Issue>48</Issue>
<PubDate>
<Year>2013</Year>
<Month>Dec</Month>
<Day>6</Day>
</PubDate>
</JournalIssue>
<Title>Nanotechnology</Title>
<ISOAbbreviation>Nanotechnology</ISOAbbreviation>
</Journal>
<ArticleTitle>Work function engineering of ZnO electrodes by using p-type and n-type doped carbon nanotubes.</ArticleTitle>
<Pagination>
<MedlinePgn>484013</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1088/0957-4484/24/48/484013</ELocationID>
<Abstract>
<AbstractText>Transparent electrodes in organic electronic devices are strongly needed in order to replace indium tin oxide (ITO). Some of the best candidates are ZnO films, which have shown both good electronic properties and solution processability compatible with roll-to-roll production of the devices. We present the possibility to engineer the work function of ZnO by blending it with carbon nanotubes (CNTs). B-doped (p-type), N-doped (n-type) and undoped CNTs as well as their blends with ZnO have been characterized by atomic force microscopy (AFM), scanning Kelvin probe microscopy (SKPM) and Raman spectroscopy. The results of Raman spectroscopy demonstrate the substitutional doping of carbon nanotubes, which preserves their covalent structure although increasing the disorder within the nanotubes. The roughness and average shape of grains of ZnO when blended with the doped nanotubes have been measured by AFM. Finally, SKPM shows that the work function of the blends can be engineered from 4.4 ± 0.1 to 4.9 ± 0.1 eV according to the kind of nanotube that is blended even if only a small amount of nanotubes is added to the blend (0.08 wt%).</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Urbina</LastName>
<ForeName>Antonio</ForeName>
<Initials>A</Initials>
<Affiliation>Department of Physics and Centre for Plastic Electronics, Imperial College London, Prince Consort Road, London SW7 2AZ, UK. Department of Electronics, Technical University of Cartagena, Plaza Hospital 1, 30202 Cartagena, Spain.</Affiliation>
</Author>
<Author ValidYN="Y">
<LastName>Park</LastName>
<ForeName>Ji Sun</ForeName>
<Initials>JS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Ju Min</ForeName>
<Initials>JM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Sang Ouk</ForeName>
<Initials>SO</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Ji-Seon</ForeName>
<Initials>JS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType>Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>11</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nanotechnology</MedlineTA>
<NlmUniqueID>101241272</NlmUniqueID>
<ISSNLinking>0957-4484</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2013</Year>
<Month>11</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>11</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>11</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>11</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1088/0957-4484/24/48/484013</ArticleId>
<ArticleId IdType="pubmed">24196784</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV2/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000276 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000276 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV2
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24196784
   |texte=   Work function engineering of ZnO electrodes by using p-type and n-type doped carbon nanotubes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24196784" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IndiumV2 

Wicri

This area was generated with Dilib version V0.5.76.
Data generation: Tue May 20 07:24:43 2014. Site generation: Thu Mar 7 11:12:53 2024